Loading…

Horizontal array beamforming in an azimuthally anisotropic internal wave field

A numerical study of beamforming on a horizontal array is performed in a shallow water waveguide where a summer thermocline is perturbed by a time evolving realization of an internal wave field. The components of the internal wave field consist of a horizontally (azimuthally) isotropic, spatially ho...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the Acoustical Society of America 2003-07, Vol.114 (1), p.131-144
Main Authors: Finette, Steven, Oba, Roger
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A numerical study of beamforming on a horizontal array is performed in a shallow water waveguide where a summer thermocline is perturbed by a time evolving realization of an internal wave field. The components of the internal wave field consist of a horizontally (azimuthally) isotropic, spatially homogeneous contribution, and a horizontally anisotropic, spatially inhomogeneous component. These terms represent a diffuse ("background") internal wave field and a localized solitary wave packet, respectively. Conventional beamforming is performed as a function of time while the internal wave field evolves throughout a computational volume containing the source-receiver paths. Source-receiver orientation with respect to the azimuthally anisotropic component has a significant effect on the beamformed output. When the source-receiver configuration is oriented approximately parallel to the solitary wave crests, beam wander, fading, beam splitting and coherence length degradation occurs in a time-dependent manner as the solitary wave packet passes through the environment. Both horizontal refraction of energy and a time-dependent modal source excitation distribution are responsible for these beamforming effects. In cases where source-receiver orientation is not approximately parallel to the wave crests, these effects are substantially reduced or eliminated, indicating that an azimuthally selective perturbation of the acoustic field can be attributed to the wave packet. Modal decomposition of the acoustic field and single mode starting fields are used to infer that, for the source-receiver orientation along the wave crests and troughs, acoustic propagation is predominantly adiabatic. A modal phase speed analysis explains several features associated with the beamformed power.
ISSN:0001-4966
1520-8524
DOI:10.1121/1.1582441