Loading…

The Counting Function and Its Representation in the Parietal Cortex in Humans and Animals

Current data provide evidence that the ability to assess numbers is present not only in adult humans, but also in animals and children of preverbal age. Studies of behavior in infants and animals have demonstrated that the perception of number, the discrimination of quantities, and elementary additi...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience and behavioral physiology 2010-02, Vol.40 (2), p.185-196
Main Authors: Varga, M. E., Pavlova, O. G., Nosova, S. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current data provide evidence that the ability to assess numbers is present not only in adult humans, but also in animals and children of preverbal age. Studies of behavior in infants and animals have demonstrated that the perception of number, the discrimination of quantities, and elementary addition and subtraction appear during onto- and phylogenesis before the appearance of speech. Number perception in humans and animals has common features: the greater the difference between numbers, the easier they are to discriminate; for a given difference between numbers, increases in size lead to increased difficulty in discrimination. Clinical data on counting impairments in patients and functional tomography studies of number operations in healthy subjects have shown that the key structures involved in number perception in humans are located in the parietal cortex. As demonstrated by experiments on monkeys and dogs, recognition of number in these species is also associated with the parietal area of the cortex. The similarity of the morphofunctional bases of “counting behavior” in humans and animals suggests that counting can be regarded as a functional mechanism of adaptive behavior which formed during evolution.
ISSN:0097-0549
1573-899X
DOI:10.1007/s11055-009-9238-z