Loading…

Broad Expression of Toll-Like Receptors in the Human Central Nervous System

The family of Toll-like receptors (TLRs) plays a key role in controlling innate immune responses to a wide variety of pathogen-associated molecules. In this study we investigated expression of TLRs in vitro by purified human microglia, astrocytes, and oligodendrocytes, and in vivo by immunohistochem...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuropathology and experimental neurology 2002-11, Vol.61 (11), p.1013-1021
Main Authors: BSIBSI, MALIKA, RAVID, RIVKA, GVERIC, DJORDJE, VAN NOORT, JOHANNES M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The family of Toll-like receptors (TLRs) plays a key role in controlling innate immune responses to a wide variety of pathogen-associated molecules. In this study we investigated expression of TLRs in vitro by purified human microglia, astrocytes, and oligodendrocytes, and in vivo by immunohistochemical examination of brain and spinal cord sections. Cultured primary microglia were found to express mRNA encoding a wide range of different TLR family members while astrocytes and oligodendrocytes primarily express TLR2 and TLR3. Comparisons between microglia derived from a series of control subjects and neurodegenerative cases indicate distinct differences in levels of mRNA encoding the different TLRs in different microglia samples. Interestingly, expression of TLR proteins in cultured microglia as revealed by immunocytochemistry was restricted to intracellular vesicles, whereas in astrocytes they were exclusively localized on the cell surface. Finally, in vivo expression of TLR3 and TLR4 was examined by immunohistochemical analysis of brain and spinal cord sections from both control and multiple sclerosis brains, revealing enhanced expression of either TLR in inflamed CNS tissues. Together, our data reveal broad and regulated expression of TLRs both in vitro and in vivo by human glia cells.
ISSN:0022-3069
1554-6578
DOI:10.1093/jnen/61.11.1013