Loading…

Vertical and Bisection Bias in Active Touch

We investigated the conditions that underlie the vertical and bisection illusion in touch, in order to understand the basis of their similarity to visual illusions, and the means of reducing the biases in length perception by active touch. Movement, speed, and spatial reference cues were tested. Mov...

Full description

Saved in:
Bibliographic Details
Published in:Perception (London) 2000-01, Vol.29 (4), p.481-500
Main Authors: Millar, Susanna, Al-Attar, Zainab
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigated the conditions that underlie the vertical and bisection illusion in touch, in order to understand the basis of their similarity to visual illusions, and the means of reducing the biases in length perception by active touch. Movement, speed, and spatial reference cues were tested. Movements in scanning L-shapes in ipsilateral and contralateral (across the body midline) table-top space produced significant underestimation of the vertical line with the right hand, but not with the left hand. Right-handed scanning of L-shapes showed no significant bias when the vertical line in the figure was aligned to the body midline, suggesting that spatial cues were involved. The vertical line was overestimated in inverted T-shapes, but underestimated in rotated T-shapes, implicating line bisection. Holding scanning latencies constant reduced the vertical error for inverted T-shapes, but could not explain the bisection bias. Sectioning biases were predicted by the location of junctions on sectioned lines, showing that junction points act as misleading anchor cues for movement extents. The illusion was significantly reduced when reference information was added by instructing subjects to relate two-handed scanning of the figure to an external frame and to body-centred cues. It is argued that disparities in spatial reference (anchor) cues for movement extents are involved in vertical and bisection biases in active touch. The hypothesis that length illusions depend on disparities in spatial reference information can also account for the similarity of the tactile to the visual horizontal – vertical illusion.
ISSN:0301-0066
1468-4233
DOI:10.1068/p2989