Loading…

Silk matrix for tissue engineered anterior cruciate ligaments

A silk-fiber matrix was studied as a suitable material for tissue engineering anterior cruciate ligaments (ACL). The matrix was successfully designed to match the complex and demanding mechanical requirements of a native human ACL, including adequate fatigue performance. This protein matrix supporte...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2002-10, Vol.23 (20), p.4131-4141
Main Authors: Altman, Gregory H, Horan, Rebecca L, Lu, Helen H, Moreau, Jodie, Martin, Ivan, Richmond, John C, Kaplan, David L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A silk-fiber matrix was studied as a suitable material for tissue engineering anterior cruciate ligaments (ACL). The matrix was successfully designed to match the complex and demanding mechanical requirements of a native human ACL, including adequate fatigue performance. This protein matrix supported the attachment, expansion and differentiation of adult human progenitor bone marrow stromal cells based on scanning electron microscopy, DNA quantitation and the expression of collagen types I and III and tenascin-C markers. The results support the conclusion that properly prepared silkworm fiber matrices, aside from providing unique benefits in terms of mechanical properties as well as biocompatibility and slow degradability, can provide suitable biomaterial matrices for the support of adult stem cell differentiation toward ligament lineages. These results point toward this matrix as a new option for ACL repair to overcome current limitations with synthetic and other degradable materials.
ISSN:0142-9612
1878-5905
DOI:10.1016/S0142-9612(02)00156-4