Loading…

Trivalent Ions Activate Abscisic Acid-Inducible Promoters through an ABI1-Dependent Pathway in Rice Protoplasts

The plant hormone abscisic acid (ABA) mediates many vital processes in plant growth and development, including seed dormancy, cell division, water use efficiency, and adaptation to drought, salinity, chilling, pathogen attack, and UV light. Our understanding of ABA signal transduction is fragmentary...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2000-08, Vol.123 (4), p.1553-1560
Main Authors: Dik Hagenbeek, Quatrano, Ralph S., Rock, Christopher D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The plant hormone abscisic acid (ABA) mediates many vital processes in plant growth and development, including seed dormancy, cell division, water use efficiency, and adaptation to drought, salinity, chilling, pathogen attack, and UV light. Our understanding of ABA signal transduction is fragmentary and would benefit from specific and facile probes of the process. Protoplasts from rice (Oryza sativa L. cv IR54) embryonic suspension cultures cotransformed with effector plasmids encoding the maize (Zea mays) VIVIPAROUS1 cDNA and/or the Arabidopsis dominant negative mutant (abi1-1) ABA-insensitive cDNA demonstrated genetic interactions of VIVIPAROUS1 and abil-1 in transactivation of the ABA-inducible HVA1 promoter from barley (Hordeum vulgare), suggesting the mechanisms of these effectors are conserved among monocots and dicots. Trivalent ions have been shown to act as an effector of gene expression in plants and animals, although the mechanism of action is unknown. We show in two complementary transient ABA-inducible gene expression assays (β-glucuronidase and luciferase enzymatic activities and quantitative flow cytometry of green fluorescent protein) that trivalent ions specifically interact with an ABI1-dependent ABA-signaling pathway leading to gene expression. Trivalent ions mimic ABA effects on gene expression and may be a useful tool to study ABA signaling.
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.123.4.1553