Loading…

Immobilization of glycoproteins, such as VEGF, on biodegradable substrates

Attachment of growth factors to biodegradable polymers, such as poly(lactide-co-glycolide) (PLGA), may enhance and/or accelerate integration of tissue engineering scaffolds. Although proteins are commonly bound via abundant amino groups, a more selective approach may increase bioactivity of immobili...

Full description

Saved in:
Bibliographic Details
Published in:Acta biomaterialia 2008-07, Vol.4 (4), p.1016-1023
Main Authors: Sharon, J.L., Puleo, D.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Attachment of growth factors to biodegradable polymers, such as poly(lactide-co-glycolide) (PLGA), may enhance and/or accelerate integration of tissue engineering scaffolds. Although proteins are commonly bound via abundant amino groups, a more selective approach may increase bioactivity of immobilized molecules. In this research, exposed carboxyl groups on acid-terminated PLGA were modified with dihydrazide spacer molecules. The number of hydrazide groups available for subsequent attachment of protein was dependent on dihydrazide length, with shorter molecules present at significantly greater surface densities. The potent angiogenic glycoprotein vascular endothelial growth factor (VEGF) was oxidized with periodate and the aldehyde moieties allowed to react with the hydrazide-derivatized PLGA. Derivatization initially affected the amount of protein bound to the surfaces, but differences were substantially reduced following overnight incubation in saline. More importantly, use of shorter dihydrazide spacers significantly enhanced accessibility of immobilized VEGF for binding neutralizing antibody and soluble VEGF receptor. Furthermore, immobilized growth factor enhanced endothelial cell proliferation, with surfaces having the shortest and longest spacers stimulating greater effects. The present work has not only demonstrated an alternative approach to immobilizing growth factors on biodegradable materials, but the scheme can be used to alter the amount of protein bound as well as its availability for subsequent biointeractions.
ISSN:1742-7061
1878-7568
DOI:10.1016/j.actbio.2008.02.017