Loading…

Replication and expression of a swinepox virus vector delivering feline leukemia virus Gag and Env to cell lines of swine and feline origin

The host range of swinepox virus (SPV) is restricted to swine, although SPV has been shown to infect mammalian, non-swine cells, without recovery of infectious virus. SPV is a reasonable candidate for development as a non-productively replicating viral vector for use in non-swine, mammalian species,...

Full description

Saved in:
Bibliographic Details
Published in:Virus research 2003-12, Vol.98 (1), p.1-15
Main Authors: Winslow, Barbara J., Cochran, Mark D., Holzenburg, Andreas, Sun, Jingchuan, Junker, David E., Collisson, Ellen W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The host range of swinepox virus (SPV) is restricted to swine, although SPV has been shown to infect mammalian, non-swine cells, without recovery of infectious virus. SPV is a reasonable candidate for development as a non-productively replicating viral vector for use in non-swine, mammalian species, such as the cat. A novel SPV gene deletion (SPV 043) was created and found to be non-attenuating. This deletion was utilized to generate a stable recombinant virus expressing the Gag-Pro and Env proteins of feline leukemia virus (FeLV). Expression and replication of this vector was studied in embryonic swine kidney cells (ESK-4), and two feline cell lines, Crandell feline kidney cells (CRFK) and feline skin fibroblasts (FSF). Our results showed that feline cells were susceptible to infection by SPV and supported expression of foreign genes driven by synthetic poxvirus promoters, however, SPV viral DNA was not replicated in feline cells and infectious virus was not recovered. In addition, FeLV Gag virus-like particles were produced from both ESK-4 and CRFK cells and foreign antigens were incorporated into infectious SPV intracellular mature virions (IMV). These results suggest that SPV may have potential as a safe vaccine delivery vector for cats.
ISSN:0168-1702
1872-7492
DOI:10.1016/j.virusres.2003.08.005