Loading…

Monophosphoryl Lipid A Activates Both Human Dendritic Cells and T Cells

The induction of dendritic cell (DC) maturation is critical for the induction of Ag-specific T lymphocyte responses and may be essential for the development of human vaccines relying on T cell immunity. In this study, we have investigated the effects of monophosphoryl lipid A (MPL) on human monocyte...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2002-01, Vol.168 (2), p.926-932
Main Authors: Ismaili, Jamila, Rennesson, Joelle, Aksoy, Ezra, Vekemans, Johan, Vincart, Benoit, Amraoui, Zoulikha, Van Laethem, Francois, Goldman, Michel, Dubois, Patrice M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The induction of dendritic cell (DC) maturation is critical for the induction of Ag-specific T lymphocyte responses and may be essential for the development of human vaccines relying on T cell immunity. In this study, we have investigated the effects of monophosphoryl lipid A (MPL) on human monocyte-derived DC as well as peripheral blood T cells. Calcium mobilization, mitogen-activated protein kinase activation, and the NF-kappaB transcription factor were induced after MPL stimulation of DC and required high doses of MPL (100 microg/ml). Maturation parameters such as production of IL-12 and increases in cell surface expression of HLA-DR, CD80, CD86, CD40, and CD83 were observed following DC treatment with MPL. However, lower levels of IL-12 were induced by MPL when compared with lipopolysaccharide. This is likely to be related to differences in the kinetics of extracellular signal-related kinase 1/2 and p-38 phosphorylation induced by both molecules. Although maturation induced by MPL was weaker when compared with lipopolysaccharide, it appeared to be sufficient to support optimal activation of allogeneic naive CD45RA(+) T cell and anti-tetanus toxoid CD4 T cells. MPL at low doses (5 microg/ml) had no impact on DC maturation, while its addition to DC-T cell cocultures induced full T cell activation. The observed effect was related to the fact that MPL also acts directly on T cells, likely through their Toll-like receptors, by increasing their intracellular calcium and up-regulating their CD40 ligand expression. Together, these data support a model where MPL enhances T cell responses by having an impact on DC and T cells.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.168.2.926