Loading…

Ouabain and substrate affinities of human Na(+)-K(+)-ATPase alpha(1)beta(1), alpha(2)beta(1), and alpha(3)beta(1) when expressed separately in yeast cells

Human Na(+)-K(+)-ATPase alpha(1)beta(1), alpha(2)beta(1), and alpha(3)beta(1) heterodimers were expressed individually in yeast, and ouabain binding and ATP hydrolysis were measured in membrane fractions. The ouabain equilibrium dissociation constant was 13-17 nM for alpha(1)beta(1) and alpha(3)beta...

Full description

Saved in:
Bibliographic Details
Published in:American Journal of Physiology: Cell Physiology 2001-10, Vol.281 (4), p.C1355-C1364
Main Authors: Müller-Ehmsen, J, Juvvadi, P, Thompson, C B, Tumyan, L, Croyle, M, Lingrel, J B, Schwinger, R H, McDonough, A A, Farley, R A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human Na(+)-K(+)-ATPase alpha(1)beta(1), alpha(2)beta(1), and alpha(3)beta(1) heterodimers were expressed individually in yeast, and ouabain binding and ATP hydrolysis were measured in membrane fractions. The ouabain equilibrium dissociation constant was 13-17 nM for alpha(1)beta(1) and alpha(3)beta(1) at 37 degrees C and 32 nM for alpha(2)beta(1), indicating that the human alpha-subunit isoforms have a similar high affinity for cardiac glycosides. K(0.5) values for antagonism of ouabain binding by K(+) were ranked in order as follows: alpha(2) (6.3 +/- 2.4 mM) > alpha(3) (1.6 +/- 0.5 mM) approximately alpha(1) (0.9 +/- 0.6 mM), and K(0.5) values for Na(+) antagonism of ouabain binding to all heterodimers were 9.5-13.8 mM. The molecular turnover for ATP hydrolysis by alpha(1)beta(1) (6,652 min(-1)) was about twice as high as that by alpha(3)beta(1) (3,145 min(-1)). These properties of the human heterodimers expressed in yeast are in good agreement with properties of the human Na(+)-K(+)-ATPase expressed in Xenopus oocytes (G Crambert, U Hasler, AT Beggah, C Yu, NN Modyanov, J-D Horisberger, L Lelievie, and K Geering. J Biol Chem 275: 1976-1986, 2000). In contrast to Na(+) pumps expressed in Xenopus oocytes, the alpha(2)beta(1) complex in yeast membranes was significantly less stable than alpha(1)beta(1) or alpha(3)beta(1), resulting in a lower functional expression level. The alpha(2)beta(1) complex was also more easily denatured by SDS than was the alpha(1)beta(1) or the alpha(3)beta(1) complex.
ISSN:0363-6143
1522-1563
DOI:10.1152/ajpcell.2001.281.4.C1355