Loading…

Airflow Resistance of Airflow-Regulating Devices Described by Independent Coefficients

Rehabilitation after laryngectomy includes more and more the use of airflow-regulating devices such as shunt valves (SVs), tracheostoma valves (TSVs), and heat and moisture exchange (HME) filters. In determining the quality of those devices, airflow resistance is a very important factor. It is curre...

Full description

Saved in:
Bibliographic Details
Published in:Annals of otology, rhinology & laryngology rhinology & laryngology, 2001-07, Vol.110 (7), p.639-645
Main Authors: Verkerke, Gijsbertus Jacob, Geertsema, Albert Anne, Schutte, Harm Kornelis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rehabilitation after laryngectomy includes more and more the use of airflow-regulating devices such as shunt valves (SVs), tracheostoma valves (TSVs), and heat and moisture exchange (HME) filters. In determining the quality of those devices, airflow resistance is a very important factor. It is currently defined as pressure drop divided by airflow. However, for most applications, this definition does not result in a pressure- and airflow-independent parameter. Therefore, a new set of parameters is defined and applied to pressure-airflow curves of airflow-regulating devices. Pressure drop over TSVs and HME filters appears to have a squared relationship with flow. In SVs, it has a linear relationship. The new set of parameters describes the pressure-airflow relationship properly for all considered devices. In conclusion, theoretical predictions of flow mechanics appear to be valid for SVs, TSVs, and HME filters. Only 2 coefficients are necessary to describe the pressure-flow characteristics of these airflow-regulating devices, independent of pressure drop over and flow through the device.
ISSN:0003-4894
1943-572X
DOI:10.1177/000348940111000709