Loading…

Training Affects the Collagen Framework of Subchondral Bone in Foals

Subchondral bone provides structural support to the overlying articular cartilage and plays an important role in osteochondral diseases. There is growing insight that the mechanical features of bone are related to the biochemistry of the collagen network. In this study the effect of exercise on wate...

Full description

Saved in:
Bibliographic Details
Published in:The veterinary journal (1997) 2001-07, Vol.162 (1), p.24-32
Main Authors: BRAMA, P.A.J., BANK, R.A., TEKOPPELE, J.M., WEEREN, P.R.VAN
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Subchondral bone provides structural support to the overlying articular cartilage and plays an important role in osteochondral diseases. There is growing insight that the mechanical features of bone are related to the biochemistry of the collagen network. In this study the effect of exercise on water, calcium and the collagen network (total collagen, lysyl-hydroxylation, hydroxylysylpyridinoline, and lysylpyridinoline crosslinks) of subchondral bone at two differently loaded sites (site 1: intermittantly loaded; site 2: constantly loaded) is investigated in foals. Exercise influenced calcium content and levels of both types of crosslinks at site 1, but had no influence on site 2. There was no concomitant increase in lysyl-hydroxylation level with the rise in crosslinks. Levels of lysyl-hydroxylation and lysylpyridinoline crosslinking were lower at site 1 than at site 2. It is concluded that exercise affects the post-translational modifications of the collagen component of subchondral bone. Loading also appears to play a role in site-related topographical differences. The lack of any relation between the sum of pyridinoline crosslinks and the amount of triple helical hydroxylysine gives support to a recent hypothesis that lysyl-hydroxylation of the triple helix and the telopeptides are under seperate control.
ISSN:1090-0233
1532-2971
DOI:10.1053/tvjl.2001.0570