Loading…

Modified Atmosphere Treatments as a Potential Disinfestation Technique for Arthropod Pests in Greenhouses

Incidental transport of arthropods on plant material can be a significant mode of pest entry into greenhouses. We evaluated the use of controlled atmosphere treatments as a potential way to eliminate arthropod pests on plant propagules (i.e., cuttings or small rooted plants). Lethal exposures to CO2...

Full description

Saved in:
Bibliographic Details
Published in:Journal of economic entomology 2001-04, Vol.94 (2), p.430-438
Main Authors: Held, D. W., Potter, D. A., Gates, R. S., Anderson, R. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Incidental transport of arthropods on plant material can be a significant mode of pest entry into greenhouses. We evaluated the use of controlled atmosphere treatments as a potential way to eliminate arthropod pests on plant propagules (i.e., cuttings or small rooted plants). Lethal exposures to CO2 or N2 were determined for common greenhouse pests including fungus gnat larvae, Bradysia sp.; green peach aphid, Myzus persicae (Sulzer); sweetpotato whitefly, Bemisia sp.; twospotted spider mite, Tetranychus urticae Koch; and western flower thrips, Frankliniella occidentalis (Pergande). We also studied the effect of pest species, life stage, and presence or absence of plants on efficacy of modified atmosphere treatments. Finally, effects of modified atmospheres on plant quality were evaluated for several bedding plant species including begonia, Begonia semperflorens-cultorum Hort. ‘Cocktail Series’, chrysanthemum, Dendranthema grandiflora Tzvelev., geranium, Pelargonium × hortorum L.H. Bailey, and impatiens, Impatiens wallerana Hook f., and among cultivars of geranium and chrysanthemum. Exposure for 12–18 h to >99% N2 or CO2 caused complete mortality of aphids, mites, thrips, and whiteflies. Fungus gnat larvae were more tolerant of hypoxic conditions. Adult mites and eggs were equally susceptible. For most pests, there was no difference in response to atmospheres modified by CO2 or N2. However, there was variation in response among plant species and cultivars, with effects ranging from delayed flowering to mortality. Despite the possibility of adverse effects on some plants, this work indicates that use of modified atmospheres has potential to eliminate arthropod pests on plant propagules before they are introduced into greenhouses.
ISSN:0022-0493
1938-291X
0022-0493
DOI:10.1603/0022-0493-94.2.430