Loading…

Glycoprotein D Homologs in Herpes Simplex Virus Type 1, Pseudorabies Virus, and Bovine Herpes Virus Type 1 Bind Directly to Human HveC (Nectin-1) with Different Affinities

Distinct subsets of human receptors for alphaherpesviruses mediate the entry of herpes simplex virus (HSV), pseudorabies virus (PrV), or bovine herpes virus type 1 (BHV-1) into cells. Glycoprotein D (gD) is essential for receptor-mediated entry of all three viruses into cells. However, the gD homolo...

Full description

Saved in:
Bibliographic Details
Published in:Virology (New York, N.Y.) N.Y.), 2001-02, Vol.280 (1), p.7-18
Main Authors: Connolly, Sarah A., Whitbeck, J.Charles, Rux, Ann H., Krummenacher, Claude, van Drunen Littel-van den Hurk, Sylvia, Cohen, Gary H., Eisenberg, Roselyn J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Distinct subsets of human receptors for alphaherpesviruses mediate the entry of herpes simplex virus (HSV), pseudorabies virus (PrV), or bovine herpes virus type 1 (BHV-1) into cells. Glycoprotein D (gD) is essential for receptor-mediated entry of all three viruses into cells. However, the gD homologs of these viruses share only 22–33% amino acid identity. Several entry receptors for HSV have been identified. Two of these, HveA (HVEM) and HveC (nectin-1), mediate entry of most HSV-1 and HSV-2 strains and are bound directly by HSV gD. A third receptor, HveB (nectin-2), mediates entry of HSV-2 and only a limited number of HSV-1 strains. HveB and HveC can also serve as entry receptors for PrV, whereas only HveC can serve this function for BHV-1. We show here that gD from PrV and BHV-1 binds directly to the human receptors that mediate PrV and BHV-1 entry. We expressed soluble forms of PrV gD and BHV-1 gD using recombinant baculoviruses and purified each protein. Using ELISA, we detected direct binding of PrV gD to HveB and HveC and direct binding of BHV-1 gD to HveC. Biosensor analysis revealed that PrV gD had a 10-fold higher affinity than HSV-1 gD for human HveC. In contrast, the binding of BHV-1 gD to HveC was weak. PrV gD and HSV-1 gD competed for binding to the V domain of HveC and both inhibited entry of the homologous and heterologous viruses. These data suggest that the two forms of gD bind to a common region on human HveC despite their low amino acid similarity. Based on affinities for human HveC, we predict a porcine HveC homolog may be important for PrV infection in its natural host, whereas a BHV-1 infection in its natural host may be mediated by a receptor other than a bovine HveC homolog.
ISSN:0042-6822
1096-0341
DOI:10.1006/viro.2000.0747