Loading…

Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors

In some halides RX, the halogen X has a region of positive electrostatic potential on its outermost portion, centered around the extension of the R-X bond. The electrostatic attraction between this positive region and a lone pair of a Lewis base is termed halogen bonding. The existence and magnitude...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular modeling 2007-07, Vol.13 (6-7), p.643-650
Main Authors: Politzer, Peter, Murray, Jane S, Concha, Monica C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In some halides RX, the halogen X has a region of positive electrostatic potential on its outermost portion, centered around the extension of the R-X bond. The electrostatic attraction between this positive region and a lone pair of a Lewis base is termed halogen bonding. The existence and magnitudes of such positive potentials on some covalently bonded halogens, and the characteristic directionality of the interaction, can be explained in terms of the degree of sp hybridization and polarizability of X and the electronegativity of R. Halogen bonding increases in strength in the order Cl < Br < I; fluorine is frequently said to not form halogen bonds, although a notable result of the present study is computational evidence that it does have the capability of doing so, if R is sufficiently electron withdrawing. An increasingly important application of halogen bonding is in the design of new materials (e.g., crystal engineering). In this paper, we present the calculated energies of a series of halogen-bonding interactions that could be the basis for forming linear chains, of types X---X---X--- or X---Y---X---Y---. We focus upon chlorides and bromides, and nitrogen bases. The B3PW91/6-311G(3df,2p) and MP2/6-311++G(3df,2p) procedures were used. We show how the computed electrostatic potentials (B3PW91/6-31G**) can provide guidance in selecting appropriate halide/base pairs.
ISSN:1610-2940
0948-5023
DOI:10.1007/s00894-007-0176-9