Loading…

Phospholipid scramblases: An overview

Phospholipid scramblases are a group of homologous proteins that are conserved in all eukaryotic organisms. They are believed to be involved in destroying plasma membrane phospholipid asymmetry at critical cellular events like cell activation, injury and apoptosis. However, a detailed mechanism of p...

Full description

Saved in:
Bibliographic Details
Published in:Archives of biochemistry and biophysics 2007-06, Vol.462 (1), p.103-114
Main Authors: Sahu, Santosh Kumar, Gummadi, Sathyanarayana N., Manoj, N., Aradhyam, Gopala Krishna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phospholipid scramblases are a group of homologous proteins that are conserved in all eukaryotic organisms. They are believed to be involved in destroying plasma membrane phospholipid asymmetry at critical cellular events like cell activation, injury and apoptosis. However, a detailed mechanism of phospholipid scrambling still awaits a proper understanding. The most studied member of this family, phospholipid scramblase 1 (PLSCR1) (a 37 kDa protein), is involved in rapid Ca 2+ dependent transbilayer redistribution of plasma membrane phospholipids. Recently the function of PLSCR1 as a phospholipids translocator has been challenged and evidences suggest that PLSCR1 acts as signaling molecule. It has been shown to be involved in protein phosphorylation and as a potential activator of genes in response to interferon and other cytokines. Interferon induced rapid biosynthesis of PLSCR1 targets some of the protein into the nucleus, where it binds to the promoter region of inositol 1,4,5-triphosphate (IP3) receptor type 1 (IP3R1) gene and induces its expression. Palmitoylation of PLSCR1 acts as a switch, controlling its localization either to the PM or inside the nucleus. In the present review, we discuss the current understanding of PLSCR1 in relation to its trafficking, localization and signaling functions.
ISSN:0003-9861
1096-0384
DOI:10.1016/j.abb.2007.04.002