Loading…

Erythrocyte Glut1 Triggers Dehydroascorbic Acid Uptake in Mammals Unable to Synthesize Vitamin C

Of all cells, human erythrocytes express the highest level of the Glut1 glucose transporter. However, the regulation and function of Glut1 during erythropoiesis are not known. Here, we report that glucose transport actually decreases during human erythropoiesis despite a >3-log increase in Glut1...

Full description

Saved in:
Bibliographic Details
Published in:Cell 2008-03, Vol.132 (6), p.1039-1048
Main Authors: Montel-Hagen, Amélie, Kinet, Sandrina, Manel, Nicolas, Mongellaz, Cédric, Prohaska, Rainer, Battini, Jean-Luc, Delaunay, Jean, Sitbon, Marc, Taylor, Naomi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Of all cells, human erythrocytes express the highest level of the Glut1 glucose transporter. However, the regulation and function of Glut1 during erythropoiesis are not known. Here, we report that glucose transport actually decreases during human erythropoiesis despite a >3-log increase in Glut1 transcripts. In contrast, Glut1-mediated transport of L-dehydroascorbic acid (DHA), an oxidized form of ascorbic acid (AA), is dramatically enhanced. We identified stomatin, an integral erythrocyte membrane protein, as regulating the switch from glucose to DHA transport. Notably though, we found that erythrocyte Glut1 and associated DHA uptake are unique traits of humans and the few other mammals that have lost the ability to synthesize AA from glucose. Accordingly, we show that mice, a species capable of synthesizing AA, express Glut4 but not Glut1 in mature erythrocytes. Thus, erythrocyte-specific coexpression of Glut1 with stomatin constitutes a compensatory mechanism in mammals that are unable to synthesize vitamin C.
ISSN:0092-8674
1097-4172
DOI:10.1016/j.cell.2008.01.042