Loading…

Maize Transposable Element Ds Is Differentially Spliced from Primary Transcripts in Endosperm and Suspension Cells

The process by which transposable elements are spliced from the host gene transcripts remains poorly understood. We previously reported that a maize transposable element Ds (dissociation) and a copy of its host site duplication are perfectly spliced from the shrunken-2 transcript in the endosperm. H...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 1999-08, Vol.261 (3), p.798-801
Main Authors: Lal, Shailesh K., Hannah, L.Curtis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The process by which transposable elements are spliced from the host gene transcripts remains poorly understood. We previously reported that a maize transposable element Ds (dissociation) and a copy of its host site duplication are perfectly spliced from the shrunken-2 transcript in the endosperm. Here, we have monitored splicing of the Ds element and its flanking Sh2 sequence following transient expression in maize suspension cells. The pattern of Ds splicing in suspension cells differs dramatically from that in the endosperm. In contrast to splicing in the endosperm, Ds in suspension cells was completely spliced from the transcripts using multiple donor and acceptor splice sites outside the element. In addition, noncanonical splice sites were utilized in suspension cells. Our results indicate that this difference in splicing is due to the context of Ds placement in the construct and/or to tissue specific differences in splicing.
ISSN:0006-291X
1090-2104
DOI:10.1006/bbrc.1999.1119