Loading…
Comparative genomics of the oxidative phosphorylation system in fungi
In this study, we have carried out an in silico analysis of the available mitochondrial and nuclear genomes of fungi in order to identify the oxidative phosphorylation (OXPHOS) proteome, the complete set of proteins that perform the OXPHOS in mitochondria. The presence of OXPHOS proteins has been in...
Saved in:
Published in: | Fungal genetics and biology 2008-09, Vol.45 (9), p.1248-1256 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, we have carried out an
in silico analysis of the available mitochondrial and nuclear genomes of fungi in order to identify the oxidative phosphorylation (OXPHOS) proteome, the complete set of proteins that perform the OXPHOS in mitochondria. The presence of OXPHOS proteins has been investigated in 27 nuclear and 52 mitochondrial genomes of fungi. Comparative genomics reveals a high conservation of the OXPHOS system within each fungal phyla, and notable differences between the OXPHOS proteomes of the fungal phyla. The most striking differences concerned Complexes I and V. The absence of Complex I has been previously described in various species of Ascomycota and Microsporidia, and the NDUFB4 and NURM accessory subunits of Complex I appear to be specific of fungi belonging to the subphylum Pezizomycotina. In addition, the Complex V essential subunit ATP14 appears to be specific of two subphyla of Ascomycota: the Saccharomycotina and Pezizomycotina. |
---|---|
ISSN: | 1087-1845 1096-0937 |
DOI: | 10.1016/j.fgb.2008.06.005 |