A BCS-like gap in the superconductor SmfeAsO0.85F0.15

Since the discovery of superconductivity in the high-transition-temperature (high-T(c)) copper oxides two decades ago, it has been firmly established that the CuO(2) plane is essential for superconductivity and gives rise to a host of other very unusual properties. A new family of superconductors wi...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2008-06, Vol.453 (7199), p.1224-1227
Main Authors: CHEN, T. Y, TESANOVIC, Z, LIU, R. H, CHEN, X. H, CHIEN, C. L
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Since the discovery of superconductivity in the high-transition-temperature (high-T(c)) copper oxides two decades ago, it has been firmly established that the CuO(2) plane is essential for superconductivity and gives rise to a host of other very unusual properties. A new family of superconductors with the general composition of LaFeAsO(1-x)F(x) has recently been discovered and the conspicuous lack of the CuO(2) planes raises the tantalizing question of a different pairing mechanism in these oxypnictides. The superconducting gap (its magnitude, structure, and temperature dependence) is intimately related to pairing. Here we report the observation of a single gap in the superconductor SmFeAsO(0.85)F(0.15) with T(c) = 42 K as measured by Andreev spectroscopy. The gap value of 2Delta = 13.34 +/- 0.3 meV gives 2Delta/k(B)T(c) = 3.68 (where k(B) is the Boltzmann constant), close to the Bardeen-Cooper-Schrieffer (BCS) prediction of 3.53. The gap decreases with temperature and vanishes at T(c) in a manner consistent with the BCS prediction, but dramatically different from that of the pseudogap behaviour in the copper oxide superconductors. Our results clearly indicate a nodeless gap order parameter, which is nearly isotropic in size across different sections of the Fermi surface, and are not compatible with models involving antiferromagnetic fluctuations, strong correlations, the t-J model, and the like, originally designed for the high-T(c) copper oxides.
ISSN:0028-0836
1476-4687