Loading…

Graded Regulation of the Kv2.1 Potassium Channel by Variable Phosphorylation

Dynamic modulation of ion channels by phosphorylation underlies neuronal plasticity. The Kv2.1 potassium channel is highly phosphorylated in resting mammalian neurons. Activity-dependent Kv2.1 dephosphorylation by calcineurin induces graded hyperpolarizing shifts in voltage-dependent activation, cau...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2006-08, Vol.313 (5789), p.976-979
Main Authors: Park, Kang-Sik, Mohapatra, Durga P, Misonou, Hiroaki, Trimmer, James S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dynamic modulation of ion channels by phosphorylation underlies neuronal plasticity. The Kv2.1 potassium channel is highly phosphorylated in resting mammalian neurons. Activity-dependent Kv2.1 dephosphorylation by calcineurin induces graded hyperpolarizing shifts in voltage-dependent activation, causing suppression of neuronal excitability. Mass spectrometry-SILAC (stable isotope labeling with amino acids in cell culture) identified 16 Kv2.1 phosphorylation sites, of which 7 were dephosphorylated by calcineurin. Mutation of individual calcineurin-regulated sites to alanine produced incremental shifts mimicking dephosphorylation, whereas mutation to aspartate yielded equivalent resistance to calcineurin. Mutations at multiple sites were additive, showing that variable phosphorylation of Kv2.1 at a large number of sites allows graded activity-dependent regulation of channel gating and neuronal firing properties.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1124254