Loading…

Gabapentin suppresses spasticity in the spinal cord–injured rat

Abstract Spasticity poses a major detrimental impact on the quality of life in a significant number of people with spinal cord injury (SCI). Recent observations in our laboratory suggest that spinal transection at the sacral S2 level induces a significant increase in glutamatergic input to sacrocaud...

Full description

Saved in:
Bibliographic Details
Published in:Neuroscience 2007-11, Vol.149 (4), p.813-821
Main Authors: Kitzman, P.H, Uhl, T.L, Dwyer, M.K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Spasticity poses a major detrimental impact on the quality of life in a significant number of people with spinal cord injury (SCI). Recent observations in our laboratory suggest that spinal transection at the sacral S2 level induces a significant increase in glutamatergic input to sacrocaudal motoneurons during the time spasticity is present in the tail muscles. The present study examined the efficacy of gabapentin, an agent that has been shown to reduce glutamate release, in managing spasticity within the tail musculature. Method In this blinded, crossover study adult Sprague-Dawley rats with S2 spinal transections were tested behaviorally for the progression of spasticity in the tail musculature using our established system. When the animals demonstrated a significant level of spastic behavior (e.g. increased response to quick stretch, noxious and non-noxious cutaneous stimuli), they received either saline or the antiepileptic agent gabapentin (GBP; 50 mg/kg i.p.) and were assessed behaviorally and electrophysiologically at 1, 3, 6, 12 and 24 h post-injection. Results Both spastic behavior and electromyography (EMG) activity were significantly decreased at 1 and 3 h post-GBP injection when compared with the activity level following administration of saline. Spastic behavior and EMG activity gradually increased over time and returned to baseline activity by 24 h post-injection. Conclusion Gabapentin diminishes both the behavioral and electrophysiological manifestation of SCI-induced spasticity, in the tail musculature, in a time dependent manner.
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2007.07.020