Loading…

Activation of the Calcineurin/NFAT Signalling Cascade Starts Early in Human Hypertrophic Myocardium

Cardiac hypertrophy is an independent risk factor for heart failure. Recent studies on gene regulation of proteins have involved intracellular Ca2+ homeostasis. The Ca2+-sensitive phosphatase, calcineurin, is one potential regulator of the hypertrophic response, so we aimed to investigate the calcin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of international medical research 2007-11, Vol.35 (6), p.803-818
Main Authors: Diedrichs, H, Hagemeister, J, Chi, M, Boelck, B, Mμller-Ehmsen, J, Schneider, CA
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cardiac hypertrophy is an independent risk factor for heart failure. Recent studies on gene regulation of proteins have involved intracellular Ca2+ homeostasis. The Ca2+-sensitive phosphatase, calcineurin, is one potential regulator of the hypertrophic response, so we aimed to investigate the calcineurin-dependent signal pathway at different stages of hypertrophy in human myocardium. We found the calcineurin pathway to be significantly activated in hypertrophic compared with non-hypertrophic myocardium as demonstrated by increased calcineurin activity and expression of calcineurin A-β and B, and GATA-4, and a shift of phosphorylated cytoplasmic NFAT-3 into the nucleus as dephosphorylated nuclear NFAT-3. There was a tendency for these changes to be more pronounced in the decompensated compared with the compensated hypertrophic myocardium. The present study provides evidence for significant activation of the Ca2+-triggered calcineurin pathway in hypertrophic humans. Already present in compensated hypertrophy it showed a tendency to a further increase following transition to decompensated hypertrophy.
ISSN:0300-0605
1473-2300
DOI:10.1177/147323000703500609