Loading…

Regulation of BRCA1, BRCA2 and BARD1 intracellular trafficking

The subcellular location and function of many proteins are regulated by nuclear–cytoplasmic shuttling. BRCA1 and BARD1 provide an interesting model system for understanding the influence of protein dimerization on nuclear transport and localization. These proteins function predominantly in the nucle...

Full description

Saved in:
Bibliographic Details
Published in:BioEssays 2005-09, Vol.27 (9), p.884-893
Main Author: Henderson, Beric R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The subcellular location and function of many proteins are regulated by nuclear–cytoplasmic shuttling. BRCA1 and BARD1 provide an interesting model system for understanding the influence of protein dimerization on nuclear transport and localization. These proteins function predominantly in the nucleus to regulate cell cycle progression, DNA repair/recombination and gene transcription, and their export to the cytoplasm has been linked to apoptosis. Germ‐line mutations in the BRCA1/BRCA2 and BARD1 genes predispose to risk of breast/ovarian cancer, and certain mutations impair protein function and nuclear accumulation. BRCA1 and BARD1 shuttle between the nucleus and cytoplasm; however heterodimerization masks the nuclear export signals located within each protein, causing nuclear retention of the BRCA1–BARD1 complex and potentially influencing its role in DNA repair, cell survival and regulation of centrosome duplication. This review discusses BRCA1, BRCA2 and BARD1 subcellular localization with emphasis on regulation of transport by protein dimerization and its functional implications. BioEssays 27:884–893, 2005. © 2005 Wiley Periodicals, Inc.
ISSN:0265-9247
1521-1878
DOI:10.1002/bies.20277