Loading…

The effects of ferrous and other ions on the abiotic formation of biomolecules using aqueous aerosols and spark discharges

It has been postulated that the oceans on early Earth had a salinity of 1.5 to 2 times the modern value and a pH between 4 and 10. Moreover, the presence of the banded iron formations shows that Fe(+2) was present in significant concentrations in the primitive oceans. Assuming the hypotheses above,...

Full description

Saved in:
Bibliographic Details
Published in:Origins of life and evolution of biospheres 2007-12, Vol.37 (6), p.507-521
Main Authors: Ruiz-Bermejo, M, Menor-Salván, C, Osuna-Esteban, S, Veintemillas-Verdaguer, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It has been postulated that the oceans on early Earth had a salinity of 1.5 to 2 times the modern value and a pH between 4 and 10. Moreover, the presence of the banded iron formations shows that Fe(+2) was present in significant concentrations in the primitive oceans. Assuming the hypotheses above, in this work we explore the effects of Fe(+2) and other ions in the generation of biomolecules in prebiotic simulation experiments using spark discharges and aqueous aerosols. These aerosols have been prepared using different sources of Fe(+2), such as FeS, FeCl(2) and FeCO(3), and other salts (alkaline and alkaline earth chlorides and sodium bicarbonate at pH = 5.8). In all these experiments, we observed the formation of some amino acids, carboxylic acids and heterocycles, involved in biological processes. An interesting consequence of the presence of soluble Fe(+2) was the formation of Prussian Blue, Fe(4)[Fe(CN)(6)](3), which has been suggested as a possible reservoir of HCN in the initial prebiotic conditions on the Earth.
ISSN:0169-6149
1573-0875
DOI:10.1007/s11084-007-9107-0