Loading…

Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells

We show that the quantum spin Hall (QSH) effect, a state of matter with topological properties distinct from those of conventional insulators, can be realized in mercury telluride-cadmium telluride semiconductor quantum wells. When the thickness of the quantum well is varied, the electronic state ch...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2006-12, Vol.314 (5806), p.1757-1761
Main Authors: Bernevig, B. Andrei, Hughes, Taylor L, Zhang, Shou-Cheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We show that the quantum spin Hall (QSH) effect, a state of matter with topological properties distinct from those of conventional insulators, can be realized in mercury telluride-cadmium telluride semiconductor quantum wells. When the thickness of the quantum well is varied, the electronic state changes from a normal to an "inverted" type at a critical thickness dc. We show that this transition is a topological quantum phase transition between a conventional insulating phase and a phase exhibiting the QSH effect with a single pair of helical edge states. We also discuss methods for experimental detection of the QSH effect.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1133734