Loading…

Bone marrow stromal cells and resorbable collagen guidance tubes enhance sciatic nerve regeneration in mice

We evaluated peripheral nerve regeneration using a tubular nerve guide of resorbable collagen filled with either bone marrow-derived cells (BMDCs) in Dulbecco's cell culture medium (DMEM) or with DMEM alone (control). The control group received just the culture medium (vehicle). The left sciati...

Full description

Saved in:
Bibliographic Details
Published in:Experimental neurology 2006-04, Vol.198 (2), p.457-468
Main Authors: Pereira Lopes, Fátima Rosalina, Camargo de Moura Campos, Lenira, Dias Corrêa, José, Balduino, Alex, Lora, Silvano, Langone, Francesco, Borojevic, Radovan, Blanco Martinez, Ana Maria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We evaluated peripheral nerve regeneration using a tubular nerve guide of resorbable collagen filled with either bone marrow-derived cells (BMDCs) in Dulbecco's cell culture medium (DMEM) or with DMEM alone (control). The control group received just the culture medium (vehicle). The left sciatic nerves of ten isogenic mice were transected and the tubular nerve guides were sutured to the end of the proximal and distal nerve stumps. Motor function was tested at 2, 4 and 6 weeks after surgery using the walking track test. The pawprints were analyzed and the print lengths (PL) were measured to evaluate functional recovery. After 6 weeks, mice were anesthetized, perfused transcardially with fixative containing aldehydes, and the sciatic nerves and tubes were dissected and processed for scanning and transmission electron microscopy. Scanning electron microscopy of the collagen tube revealed that the tube wall became progressively thinner after surgery, proving that the tube can be resorbed in vivo. Quantitative analysis of the regenerating nerves showed that the number of myelinated fibers and the myelin area were significantly increased in the experimental group. Also, motor function recovery was faster in animals that received the cell grafts. These results indicate that the collagen tube filled with BMDCs provided an adequate and favorable environment for the growth and myelination of regenerating axons compared to the collagen tube alone.
ISSN:0014-4886
1090-2430
DOI:10.1016/j.expneurol.2005.12.019