Loading…

Dendritic Saccharide Surfactant Polymers as Antifouling Interface Materials to Reduce Platelet Adhesion

Here, we report on the synthesis of dendritic saccharide surfactant polymers as antifouling interface materials to reduce platelet adhesion. An acetal-protected poly(amidoamine) (PAMAM) dendron (5, G = 2) was first synthesized by using aminoacetaldehyde dimethyl acetal (1) as the starting material t...

Full description

Saved in:
Bibliographic Details
Published in:Biomacromolecules 2006-04, Vol.7 (4), p.1036-1041
Main Authors: Zhu, Junmin, Marchant, Roger E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Here, we report on the synthesis of dendritic saccharide surfactant polymers as antifouling interface materials to reduce platelet adhesion. An acetal-protected poly(amidoamine) (PAMAM) dendron (5, G = 2) was first synthesized by using aminoacetaldehyde dimethyl acetal (1) as the starting material to provide a monovalent focal structure with dimethyl acetal-protected aldehyde functionality. Maltose dendron (M4, 6) was obtained by reacting the peripheral amine groups of acetal-dendron (5) with maltonolactone. The dendritic surfactant polymers (9) were then synthesized via a two-step method by sequential addition of maltose dendron and hexanal to react with the amine groups on the poly(vinylamine) (PVAm) backbone. Surface activity of the amphiphilic glycopolymers at the air/water interface was demonstrated by reduction in water surface tension. Adsorption of the amphiphilic glycopolymers at the solid/water interface was examined on octadecyltrichlorosilane (OTS)-coated coverslips by water contact angle measurements. A nanoscale understanding of surface-induced self-assembly of the dendritic surfactant polymer on highly oriented pyrolytic graphite (HOPG) was gained using AFM operated in fluid tapping mode. A lateral ordering of adsorbing surfactant polymer was visualized with a pattern in strands 60° out of alignment. The static platelet adhesion tests show that the hexyl side chains can facilitate adsorption of the surfactant polymers onto hydrophobic substrates, while the maltose dendron side chains can provide a dense canopy of protective glycocalyx-like layer as an antifouling interface to reduce platelet adhesion.
ISSN:1525-7797
1526-4602
DOI:10.1021/bm050611p