Loading…

Sorption of basic and acid dyes from aqueous solutions onto oxihumolite

Naturally occurring kind of weathered and oxidised young brown coal called oxihumolite was used for an adsorptive removal of basic (Methylene Blue, Malachite Green) as well as acid (Egacid Orange, Midlon Black) dyes from waters. It was shown that both kinds of dyes can be sorbed onto oxihumolite. Th...

Full description

Saved in:
Bibliographic Details
Published in:Chemosphere (Oxford) 2005-05, Vol.59 (6), p.881-886
Main Authors: JANOS, Pavel, SEDIVY, Pavel, RYZNAROVA, Milena, GRÖTSCHELOVA, Sylvie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Naturally occurring kind of weathered and oxidised young brown coal called oxihumolite was used for an adsorptive removal of basic (Methylene Blue, Malachite Green) as well as acid (Egacid Orange, Midlon Black) dyes from waters. It was shown that both kinds of dyes can be sorbed onto oxihumolite. The maximum sorption capacities determined from the parameters of Langmuir isotherms ranged from 0.070 mmol g −1 (for Midlon Black) to 0.278 mmol g −1 (for Malachite Green) and did not differ significantly for basic and acid dyes. The dye sorption (except of Midlon Black) increased in the presence of inorganic salt. Non-ionic surfactants, and surfactants bearing the same charge as the dye exhibited only a minor effect on the dye sorption, whereas oppositely charged surfactants enhanced the dye sorption to a certain extent. The pH value of the aqueous phase exhibited rather pronounced effect on the sorption of acid dyes causing a suppression of the sorption with increasing pH. The sorption of basic dyes, on the other hand, remained almost unchanged in the examined pH range. Oxihumolite is recommended for the treatment of acid wastewaters because of its limited stability in alkaline aqueous solutions.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2004.11.018