Loading…

Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology

This study demonstrates the application of Wavelength‐Scanned Cavity Ring‐Down Spectroscopy (WS‐CRDS) technology which is used to measure the stable isotopic composition of water. This isotopic water analyzer incorporates an evaporator system that allows liquid water as well as water vapor to be mea...

Full description

Saved in:
Bibliographic Details
Published in:Rapid communications in mass spectrometry 2009-08, Vol.23 (16), p.2534-2542
Main Authors: Gupta, Priya, Noone, David, Galewsky, Joseph, Sweeney, Colm, Vaughn, Bruce H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study demonstrates the application of Wavelength‐Scanned Cavity Ring‐Down Spectroscopy (WS‐CRDS) technology which is used to measure the stable isotopic composition of water. This isotopic water analyzer incorporates an evaporator system that allows liquid water as well as water vapor to be measured with high precision. The analyzer can measure H 218O, H 216O and HD16O content of the water sample simultaneously. The results of a laboratory test and two field trials with this analyzer are described. The results of these trials show that the isotopic water analyzer gives precise, accurate measurements with little or no instrument drift for the two most common isotopologues of water. In the laboratory the analyzer has a precision of 0.5 per mil for δD and 0.1 per mil for δ18O which is similar to the precision obtained by laboratory‐based isotope ratio mass spectrometers. In the field, when measuring vapor samples, the analyzer has a precision of 1.0 per mil for δD and 0.2 per mil for δ18O. These results demonstrate that the isotopic water analyzer is a powerful tool that is appropriate for use in a wide range of applications and environments. Copyright © 2009 John Wiley & Sons, Ltd.
ISSN:0951-4198
1097-0231
DOI:10.1002/rcm.4100