Microengineered platforms for cell mechanobiology

Mechanical forces play important roles in the regulation of various biological processes at the molecular and cellular level, such as gene expression, adhesion, migration, and cell fate, which are essential to the maintenance of tissue homeostasis. In this review, we discuss emerging bioengineered t...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of biomedical engineering 2009-08, Vol.11 (1), p.203-233
Main Authors: Kim, Deok-Ho, Wong, Pak Kin, Park, Jungyul, Levchenko, Andre, Sun, Yu
Format: Article
Language:eng
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mechanical forces play important roles in the regulation of various biological processes at the molecular and cellular level, such as gene expression, adhesion, migration, and cell fate, which are essential to the maintenance of tissue homeostasis. In this review, we discuss emerging bioengineered tools enabled by microscale technologies for studying the roles of mechanical forces in cell biology. In addition to traditional mechanobiology experimental techniques, we review recent advances of microelectromechanical systems (MEMS)-based approaches for cell mechanobiology and discuss how microengineered platforms can be used to generate in vivo-like micromechanical environment in in vitro settings for investigating cellular processes in normal and pathophysiological contexts. These capabilities also have significant implications for mechanical control of cell and tissue development and cell-based regenerative therapies.
ISSN:1523-9829
1545-4274