Loading…

Ultrastructure of Mycobacterium marinum granuloma in striped bass Morone saxatilis

An emerging epizootic of mycobacteriosis currently threatens striped bass Morone saxatilis populations in Chesapeake Bay, USA. Several species of mycobacteria, including Mycobacterium marinum, species resembling M. avium, M. gordonae, M. peregrinum, M. scrofulaceum and M. terrae, and the new species...

Full description

Saved in:
Bibliographic Details
Published in:Diseases of aquatic organisms 2004-11, Vol.62 (1-2), p.121-132
Main Authors: GAUTHIER, D. T, VOGELBEIN, W. K, OTTINQER, C. A
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An emerging epizootic of mycobacteriosis currently threatens striped bass Morone saxatilis populations in Chesapeake Bay, USA. Several species of mycobacteria, including Mycobacterium marinum, species resembling M. avium, M. gordonae, M. peregrinum, M. scrofulaceum and M. terrae, and the new species M. shottsii have been isolated from diseased and healthy bass. In this study, we describe the ultrastructure of developing M. marinum granulomas in experimentally infected bass over a period of 45 wk. The primary host response to injected mycobacteria was formation of large macrophage aggregations containing phagocytosed bacilli. M. marinum were always contained within phagosomes. Close association of lysosomes with mycobacterial phagosomes, as well as the presence of electron-opaque material within phagosomes, suggested phagolysosomal fusion. Development of granulomas involved epithelioid transformation of macrophages, followed by appearance of central necrosis. Desmosomes were present between mature epithelioid cells. The necrotic core region of M. marinum granulomas was separated from overlying epithelioid cells by several layers of flattened, electron-opaque spindle-shaped cells. These cells appeared to be formed by compression of epithelioid cells and, aside from a flattened nucleus, did not possess recognizable organelles. Following the development of well-defined, paucibacillary granulomas, secondary disease was observed. Recrudescence was marked by bacterial replication followed by disruption of granuloma architecture, including loss of epithelioid and spindle cell layers. In advanced recrudescent lesions, normal tissue was replaced by macrophages, fibroblasts, and other inflammatory leukocytes. Large numbers of mycobacteria were observed, both intracellular and suspended in cellular debris.
ISSN:0177-5103
1616-1580
DOI:10.3354/dao062121