Loading…

Reduced c-myc Expression Levels Limit Follicular Mature B Cell Cycling in Response to TLR Signals

The splenic B cell compartment is comprised of two major, functionally distinct, mature B cell subsets, i.e., follicular mature (FM) and marginal zone (MZ) B cells. Whereas MZ B cells exhibit a robust proliferative response following stimulation with the TLR4 ligand LPS, FM B cells display markedly...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 2009-04, Vol.182 (7), p.4065-4075
Main Authors: Meyer-Bahlburg, Almut, Bandaranayake, Ashok D, Andrews, Sarah F, Rawlings, David J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The splenic B cell compartment is comprised of two major, functionally distinct, mature B cell subsets, i.e., follicular mature (FM) and marginal zone (MZ) B cells. Whereas MZ B cells exhibit a robust proliferative response following stimulation with the TLR4 ligand LPS, FM B cells display markedly delayed and reduced levels of proliferation to the identical stimulus. The current study was designed to identify a potential mechanism(s) accounting for this differential responsiveness. In contrast to the delay in cell cycle entry, FM and MZ B cells exhibited nearly identical LPS-driven alterations in the expression level of cell surface activation markers. Furthermore, both the NF-kappaB and mTOR signaling cascades were similarly activated by LPS stimulation in FM vs MZ B cells, while inducible activation of ERK and AKT were nearly absent in both subsets. MZ B cells, however, exhibited higher basal levels of phospho-AKT and pS6, consistent with a preactivated status. Importantly, both basal and LPS activation-induced c-myc expression was markedly reduced in FM vs MZ B cells and enforced c-myc expression fully restored the defective proliferative response in FM B cells. These data support a model wherein TLR responses in FM B cells are tightly regulated by limiting c-myc levels, thereby providing an important checkpoint to control nonspecific FM B cell activation in the absence of cognate Ag.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.0802961