Loading…

The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction

Abstract To avoid complications of prosthetic vascular grafts, engineered vascular constructs have been investigated as an alternative for vascular reconstruction. The scaffolds for vascular tissue engineering remain a cornerstone of these efforts and yet many currently available options are limited...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2009-02, Vol.30 (4), p.583-588
Main Authors: Tillman, Bryan W, Yazdani, Saami K, Lee, Sang Jin, Geary, Randolph L, Atala, Anthony, Yoo, James J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract To avoid complications of prosthetic vascular grafts, engineered vascular constructs have been investigated as an alternative for vascular reconstruction. The scaffolds for vascular tissue engineering remain a cornerstone of these efforts and yet many currently available options are limited by issues of inconsistency, poor adherence of vascular cells, or inadequate biomechanical properties. In this study, we investigated whether PCL/collagen scaffolds could support cell growth and withstand physiologic conditions while maintaining patency in a rabbit aortoiliac bypass model. Our results indicate that electrospun scaffolds support adherence and growth of vascular cells under physiologic conditions and that endothelialized grafts resisted adherence of platelets when exposed to blood. When implanted in vivo , these scaffolds were able to retain their structural integrity over 1 month of implantation as demonstrated by serial ultrasonography. Further, at retrieval, these scaffolds continued to maintain biomechanical strength that was comparable to native artery. This study suggests that electrospun scaffolds combined with vascular cells may become an alternative to prosthetic vascular grafts for vascular reconstruction.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2008.10.006