Loading…

Distributed Representations of Structure: A Theory of Analogical Access and Mapping

This article describes an integrated theory of analogical access and mapping, instantiated in a computational model called LISA (Learning and Inference with Schemas and Analogies). LISA represents predicates and objects as distributed patterns of activation that are dynamically bound into propositio...

Full description

Saved in:
Bibliographic Details
Published in:Psychological review 1997-07, Vol.104 (3), p.427-466
Main Authors: Hummel, John E, Holyoak, Keith J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article describes an integrated theory of analogical access and mapping, instantiated in a computational model called LISA (Learning and Inference with Schemas and Analogies). LISA represents predicates and objects as distributed patterns of activation that are dynamically bound into propositional structures, thereby achieving both the flexibility of a connectionist system and the structure sensitivity of a symbolic system. The model treats access and mapping as types of guided pattern classification, differing only in that mapping is augmented by a capacity to learn new correspondences. The resulting model simulates a wide range of empirical findings concerning human analogical access and mapping. LISA also has a number of inherent limitations, including capacity limits, that arise in human reasoning and suggests a specific computational account of these limitations. Extensions of this approach also account for analogical inference and schema induction.
ISSN:0033-295X
1939-1471
DOI:10.1037/0033-295X.104.3.427