Loading…

The asteroid lightcurve database

The compilation of a central database for asteroid lightcurve data, i.e., rotation rate and amplitude along with ancillary information such as diameter and albedo (known or estimated), taxonomic class, etc., has been important to statistical studies for several decades. Having such a compilation sav...

Full description

Saved in:
Bibliographic Details
Published in:Icarus (New York, N.Y. 1962) N.Y. 1962), 2009-07, Vol.202 (1), p.134-146
Main Authors: Warner, Brian D., Harris, Alan W., Pravec, Petr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The compilation of a central database for asteroid lightcurve data, i.e., rotation rate and amplitude along with ancillary information such as diameter and albedo (known or estimated), taxonomic class, etc., has been important to statistical studies for several decades. Having such a compilation saves the researcher hours of effort combing through any number of journals, some obvious and some not, to check on prior research. Harris has been compiling such data in the Asteroid Lightcurve Database (LCDB) for more than 25 years with Warner and Pravec assisting the past several years. The main data included in the LCDB are lightcurve rotation periods and amplitudes, color indices, H–G parameters, diameters (actual or derived), basic binary asteroid parameters, and spin axis and shape models. As time permits we are reviewing existing entries to enter data not previously recorded (e.g., phase angle data). As of 2008 December, data for 3741 asteroids based on more than 10650 separate detail records derived from entries in various journals were included in the LCDB. Of those 3741 asteroids, approximately 3100 have data of sufficient quality for statistical analysis, including 7 that have “dual citizenship” – meaning that they have (or had) asteroid designations as well comet designations. Here we present a discussion of the nature of LCDB data, i.e., which values are actually measured and which are derived. For derived data, we give our justification for specific values. We also present some analysis based on the LCDB data, including new default albedo (pV) and phase slope parameter (G) values for the primary taxonomic classes and a review of the frequency–diameter distribution of all asteroids as well as some selected subsets. The most recent version of data used in this analysis is available for download from the Collaborative Asteroid Lightcurve Link (CALL) site at http://www.MinorPlanetObserver.com/astlc/default.htm. Other data sets, some only subsets of the full LCDB, are available in the Ephemeris of Minor Planets, The Planetary Data System, and the Minor Planet Center web site.
ISSN:0019-1035
1090-2643
DOI:10.1016/j.icarus.2009.02.003