Loading…

Electrodynamic Tether at Jupiter-II: Fast Moon Tour After Capture

An electrodynamic bare-tether mission to Jupiter, following the capture of a spacecraft (SC) into an equatorial highly elliptical orbit with perijove at about 1.3 times the Jovian radius, is discussed. Repeated applications of the propellantless Lorentz drag on a spinning tether, at the perijove vic...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 2009-04, Vol.37 (4), p.620-626
Main Authors: Sanmartin, J.R., Charro, M., Lorenzini, E.C., Garrett, H.B., Bombardelli, C., Bramanti, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An electrodynamic bare-tether mission to Jupiter, following the capture of a spacecraft (SC) into an equatorial highly elliptical orbit with perijove at about 1.3 times the Jovian radius, is discussed. Repeated applications of the propellantless Lorentz drag on a spinning tether, at the perijove vicinity, can progressively lower the apojove at constant perijove, for a tour of Galilean moons. Electrical energy is generated and stored as the SC moves from an orbit at 1 : 1 resonance with a moon, down to resonance with the next moon; switching tether current off, stored power is then used as the SC makes a number of flybys of each moon. Radiation dose is calculated throughout the mission, during capture, flybys and moves between moons. The tour mission is limited by both power needs and accumulated dose. The three-stage apojove lowering down to Ganymede, Io , and Europa resonances would total less than 14 weeks, while 4 Ganymede, 20 Europa, and 16 Io flybys would add up to 18 weeks, with the entire mission taking just over seven months and the accumulated radiation dose keeping under 3 Mrad (Si) at 10-mm Al shield thickness.
ISSN:0093-3813
1939-9375
DOI:10.1109/TPS.2009.2013955