Loading…

Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia

Simple calculations show that if deep-water H2S concentrations increased beyond a critical threshold during oceanic anoxic intervals of Earth history, the chemocline separating sulfidic deep waters from oxygenated surface waters could have risen abruptly to the ocean surface (a chemocline upward exc...

Full description

Saved in:
Bibliographic Details
Published in:Geology (Boulder) 2005-05, Vol.33 (5), p.397-400
Main Authors: Kump, Lee R, Pavlov, Alexander, Arthur, Michael A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Simple calculations show that if deep-water H2S concentrations increased beyond a critical threshold during oceanic anoxic intervals of Earth history, the chemocline separating sulfidic deep waters from oxygenated surface waters could have risen abruptly to the ocean surface (a chemocline upward excursion). Atmospheric photochemical modeling indicates that resulting fluxes of H2S to the atmosphere (>2000 times the small modern flux from volcanoes) would likely have led to toxic levels of H2S in the atmosphere. Moreover, the ozone shield would have been destroyed, and methane levels would have risen to >100 ppm. We thus propose (1) chemocline upward excursion as a kill mechanism during the end-Permian, Late Devonian, and Cenomanian-Turonian extinctions, and (2) persistently high atmospheric H2S levels as a factor that impeded evolution of eukaryotic life on land during the Proterozoic.
ISSN:0091-7613
1943-2682
DOI:10.1130/G21295.1