Loading…

NET TG1: Residual stress assessment by neutron diffraction and finite element modeling on a single bead weld on a steel plate

In the context of the efforts of Task Group 1 (TG1) of the European Network on Neutron Techniques Standardization for Structural Integrity (NET), the Joint Research Centre (JRC) participated in the experimental round robin campaign for residual stress analysis on a single weld bead on a steel plate....

Full description

Saved in:
Bibliographic Details
Published in:The International journal of pressure vessels and piping 2009, Vol.86 (1), p.63-72
Main Authors: Ohms, C., Wimpory, R.C., Katsareas, D.E., Youtsos, A.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the context of the efforts of Task Group 1 (TG1) of the European Network on Neutron Techniques Standardization for Structural Integrity (NET), the Joint Research Centre (JRC) participated in the experimental round robin campaign for residual stress analysis on a single weld bead on a steel plate. In parallel, the University of Patras (UP), in collaboration with the JRC, contributed to the corresponding numerical analysis round robin exercise. Neutron diffraction measurements were performed on a specimen, designated as A12, using the residual stress diffractometer at beam tube HB5 at the High Flux Reactor (HFR) in Petten, The Netherlands. Several line scans of strains and stresses were performed in accordance with an experimental protocol devised for this exercise and their results are presented in this paper. Two scans were made along the weld longitudinal direction beneath the upper surface of the plate, three were made in the weld transverse direction, and three through the thickness of the plate. The measured residual stresses are presented in detail. The measurements confirm that the stress distribution around this single weld bead on a plate is intrinsically 3-dimensional. The procedure followed by UP in the numerical assessment of the problem is presented in detail. The numerical results are presented in direct comparison to the JRC measurement data.
ISSN:0308-0161
1879-3541
DOI:10.1016/j.ijpvp.2008.11.009