Loading…

Who Says You can't go FAST at Night? Use of a Novel Ultrasound-Capable Night Vision Device for Prehospital Medical Personnel to Identify Noncompressible Truncal Hemorrhage

Early detection of abdominal hemorrhage via ultrasound has life-saving implications for military and civilian trauma. However, strict adherence to light discipline may prohibit the use of ultrasound devices in the deployed setting. Additionally, current night vision devices remain noncompatible with...

Full description

Saved in:
Bibliographic Details
Published in:Surgical innovation 2024-08, p.15533506241275288
Main Authors: Williams, James, Lammers, Daniel T, Francis, Andrew D, Prey, Beau J, Pumiglia, Luke I, Eckert, Matthew J, Liu, Yang, Bingham, Jason R, McClellan, John M
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Early detection of abdominal hemorrhage via ultrasound has life-saving implications for military and civilian trauma. However, strict adherence to light discipline may prohibit the use of ultrasound devices in the deployed setting. Additionally, current night vision devices remain noncompatible with ultrasound technology. This study sought to assess an innovative night vision device with ultrasound capable picture-in-picture display via a intraabdominal hemorrhage model to identify noncompressible truncal hemorrhage in blackout conditions.BACKGROUNDEarly detection of abdominal hemorrhage via ultrasound has life-saving implications for military and civilian trauma. However, strict adherence to light discipline may prohibit the use of ultrasound devices in the deployed setting. Additionally, current night vision devices remain noncompatible with ultrasound technology. This study sought to assess an innovative night vision device with ultrasound capable picture-in-picture display via a intraabdominal hemorrhage model to identify noncompressible truncal hemorrhage in blackout conditions.8 post mortem fetal porcine specimens were used and divided into 2 groups: intrabdominal hemorrhage (n = 4) vs no hemorrhage (n = 4). Intrabdominal hemorrhage was modeled via direct injection of 200 mL of normal saline into the peritoneal cavity. Under blackout conditions, 5 participants performed a focused assessment with sonography for trauma (FAST) exam on each model using the prototype ultrasound-capable night vision device.METHODS8 post mortem fetal porcine specimens were used and divided into 2 groups: intrabdominal hemorrhage (n = 4) vs no hemorrhage (n = 4). Intrabdominal hemorrhage was modeled via direct injection of 200 mL of normal saline into the peritoneal cavity. Under blackout conditions, 5 participants performed a focused assessment with sonography for trauma (FAST) exam on each model using the prototype ultrasound-capable night vision device.Of the 40 FAST exams performed, 95% (N = 38) resulted in the correct identification of intraabdominal hemorrhage. Of the incorrectly identified exams, both were false positives resulting in a 100% sensitivity, 90% specificity, 91% positive predictive value, and a 100% negative predictive value. All participants noted the novel device was easy to use and provided superior visualization for performing FAST exams under blackout conditions.RESULTSOf the 40 FAST exams performed, 95% (N = 38) resulted in the correct identificatio
ISSN:1553-3514
1553-3514
DOI:10.1177/15533506241275288