Loading…

Exploring Nanomaterials for Hydrogen Storage: Advances, Challenges, and Perspectives

Hydrogen energy heralded for its environmentally friendly, renewable, efficient, and cost‐effective attributes, stands poised as the primary alternative to fossil fuels in the future. Despite its great potential, the low volumetric density presents a formidable challenge in hydrogen storage. Address...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry, an Asian journal an Asian journal, 2024-08, Vol.19 (16), p.e202400365-n/a
Main Authors: Manzoor, Sumaira, Ali, Shahid, Mansha, Muhammad, Sadaqat, Maira, Ashiq, Muhammad Naeem, Tahir, Muhammad Nawaz, Khan, Safyan Akram
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydrogen energy heralded for its environmentally friendly, renewable, efficient, and cost‐effective attributes, stands poised as the primary alternative to fossil fuels in the future. Despite its great potential, the low volumetric density presents a formidable challenge in hydrogen storage. Addressing this challenge necessitates exploring effective storage techniques for a sustainable hydrogen economy. Solid‐state hydrogen storage in nanomaterials (physically or chemically) holds promise for achieving large‐scale hydrogen storage applications. Such approaches offer benefits, including safety, compactness, lightness, reversibility, and efficient generation of pure hydrogen fuel under mild conditions. This article presents solid‐state nanomaterials, specifically nanoporous carbons (activated carbon, carbon fibers), metal‐organic frameworks, covalently connected frameworks, nanoporous organic polymers, and nanoscale metal hydrides. Furthermore, new developments in hydrogen fuel cell technology for stationary and mobile applications have been demonstrated. The review outlines significant advancements thus far, identifies key barriers to practical implementation, and presents a perspective for future sustainable energy research. It concludes with recommendations to enhance hydrogen storage performance for cost‐effective and long‐lasting utilization. Nanomaterials for solid‐state hydrogen storage hold great potential for large‐scale hydrogen storage systems. This article presents various solid‐state nanomaterials, specifically nanoporous carbon materials, MOFs, COFs, PAFs, nanoporous organic polymers, and nanoscale metal hydrides explored for hydrogen storage applications. The review outlines significant advancements, identifies key barriers to practical implementation, and presents a perspective on hydrogen storage technologies.
ISSN:1861-4728
1861-471X
1861-471X
DOI:10.1002/asia.202400365