Loading…

Occurrence and distribution of polycyclic aromatic hydrocarbons in reclaimed water and surface water of Tianjin, China

Persistent organic pollutants (POPs) such as polycyclic aromatic hydrocarbons (PAHs) are of great concern due to their persistence, bioaccumulation and toxic effects. In this work, 16 PAHs included in the US Environmental Protection Agency's (EPA) priority pollutant list were analyzed using sol...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hazardous materials 2005-06, Vol.122 (1), p.51-59
Main Authors: Cao, Zhonghong, Wang, Yuqiu, Ma, Yongmin, Xu, Ze, Shi, Guoliang, Zhuang, Yuanyi, Zhu, Tan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Persistent organic pollutants (POPs) such as polycyclic aromatic hydrocarbons (PAHs) are of great concern due to their persistence, bioaccumulation and toxic effects. In this work, 16 PAHs included in the US Environmental Protection Agency's (EPA) priority pollutant list were analyzed using solid-phase extraction–gas chromatography–mass spectrometry (SPE–GC–MS) with a selected ion monitoring (SIM) mode. Reclaimed water and surface water sampling was undertaken in Tianjin, northern China. Total PAH concentrations varied from 1800 to 35,000 ng/L in surface waters (main rivers, tributaries, ditches, etc.) with mean value of 14,000 ng/L and from 227 to 600 ng/L in reclaimed water with mean value of 352 ng/L, respectively. The PAH profiles were dominated by low molecular weight PAHs (two- and three-ring components) in reclaimed water samples and surface water samples. These indicated that PAHs in reclaimed water and surface water might origin from oil or sewage contamination (petrogenic input). To elucidate sources, molecular indices based on indices among phenanthrene versus anthracene and fluoranthene versus pyrene were used to evaluate the possible source (pyrogenic and petrogenic sources, respectively) of PAH contamination in reclaimed water and surface water. The collected data showed that petrogenic input was predominant at almost all the stations investigated. To discriminate pattern differences and similarities among samples, principal component analysis (PCA) was performed using a correlation matrix. PCA revealed the latent relationships among all the surface water stations investigated and confirmed our analytical results. The analysis results of the ratios and PCA in this study showed that the ratios and PCA could be applied to the surface water investigation to some extent.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2005.04.003