Loading…

An investigation of the heat transfer and static pressure on the over-tip casing wall of an axial turbine operating at engine representative flow conditions. (II). Time-resolved results

This article reports the measurements of time-resolved heat transfer rate and time-resolved static pressure that have been made on the over-tip casing of a transonic axial-flow turbine operating at flow conditions that are representative of those found in modern gas turbine engines. This data is dis...

Full description

Saved in:
Bibliographic Details
Published in:The International journal of heat and fluid flow 2004-12, Vol.25 (6), p.945-960
Main Authors: Thorpe, S.J., Yoshino, S., Ainsworth, R.W., Harvey, N.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article reports the measurements of time-resolved heat transfer rate and time-resolved static pressure that have been made on the over-tip casing of a transonic axial-flow turbine operating at flow conditions that are representative of those found in modern gas turbine engines. This data is discussed and analysed in the context of explaining the physical mechanisms that influence the casing heat flux. The physical size of the measurement domain was one nozzle guide vane-pitch and from −20% to +80% rotor axial chord. Additionally, measurements of the time-resolved adiabatic wall temperature are presented. The time-mean data from the same set of experiments is presented and discussed in Part I of this article. The nozzle guide vane exit flow conditions in these experiments were a Mach number of 0.93 and a Reynolds number of 2.7 × 10 6 based on nozzle guide vane mid-height axial chord. The data reveal large temporal variations in heat transfer characteristics to the casing wall that are associated with blade-tip passing events and in particular the blade over-tip leakage flow. The highest instantaneous heat flux to the casing wall occurs within the blade-tip gap, and this has been found to be caused by a combination of increasing flow temperature and heat transfer coefficient. The time-resolved static pressure measurements have enabled a detailed understanding of the tip-leakage aerodynamics to be established, and the physical mechanisms influencing the casing heat load have been determined. In particular, this has focused on the role of the unsteady blade lift distribution that is produced by upstream vane effects. This has been seen to modulate the tip-leakage flow and cause subsequent variations in casing heat flux. The novel experimental techniques employed in these experiments have allowed the measurement of the time-resolved adiabatic wall temperature on the casing wall. These data clearly show the falling flow temperatures as work is extracted from the gas by the turbine. Additionally, these temperature measurements have revealed that the absolute stagnation temperature within the tip-gap flow can be above the turbine inlet total temperature, and indicates the presence of a work process that leads to high adiabatic wall temperatures as a blade-tip passes a point on the casing wall. It is shown that this phenomena can be explained by consideration of the flow vectors within the tip-gap, and that these in turn are related to the local blade loading
ISSN:0142-727X
1879-2278
DOI:10.1016/j.ijheatfluidflow.2004.02.028