Loading…

Non-destructive method of characterisation of radioactive waste containers using gamma spectroscopy and Monte Carlo techniques

During the decommissioning of the SATURNE accelerator at CEA Saclay (France), a number of concrete containers with radioactive materials of low or very low activity had to be characterised before their final storage. In this paper, a non-destructive approach combining gamma ray spectroscopy and Mont...

Full description

Saved in:
Bibliographic Details
Published in:Radiation protection dosimetry 2005-01, Vol.115 (1-4), p.113-116
Main Authors: Ridikas, D., Feray, S., Cometto, M., Damoy, F.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During the decommissioning of the SATURNE accelerator at CEA Saclay (France), a number of concrete containers with radioactive materials of low or very low activity had to be characterised before their final storage. In this paper, a non-destructive approach combining gamma ray spectroscopy and Monte Carlo simulations is used in order to characterise massive concrete blocks containing some radioactive waste. The limits and uncertainties of the proposed method are quantified for the source term activity estimates using 137Cs as a tracer element. A series of activity measurements with a few representative waste containers were performed before and after destruction. It has been found that neither was the distribution of radioactive materials homogeneous nor was its density unique, and this became the major source of systematic errors in this study. Nevertheless, we conclude that by combining gamma ray spectroscopy and full scale Monte Carlo simulations one can estimate the source term activity for some tracer elements such as 134Cs, 137Cs, 60Co, etc. The uncertainty of this estimation should not be bigger than a factor of 2–3.
ISSN:0144-8420
1742-3406
DOI:10.1093/rpd/nci253