Loading…

Isometry of anteromedial reconstructions mimicking the deep medial collateral ligament depends on the femoral insertion

Purpose This study aimed to investigate the length change patterns of the native deep medial collateral ligament (dMCL) and potential anteromedial reconstructions (AMs) that might be added to a reconstruction of the superficial MCL (sMCL) to better understand the control of anteromedial rotatory ins...

Full description

Saved in:
Bibliographic Details
Published in:Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA sports traumatology, arthroscopy : official journal of the ESSKA, 2024-04, Vol.32 (4), p.978-986
Main Authors: Behrendt, Peter, Robinson, James R., Herbst, Elmar, Gellhaus, Florian, Raschke, Michael J., Seekamp, Andreas, Herbort, Mirco, Kurz, Bodo, Kittl, Christoph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose This study aimed to investigate the length change patterns of the native deep medial collateral ligament (dMCL) and potential anteromedial reconstructions (AMs) that might be added to a reconstruction of the superficial MCL (sMCL) to better understand the control of anteromedial rotatory instability (AMRI). Methods Insertion points of the dMCL and potential AM reconstructions were marked with pins (tibial) and eyelets (femoral) in 11 cadaveric knee specimens. Length changes between the pins and eyelets were then tested using threads in a validated kinematics rig with muscle loading of the quadriceps and iliotibial tract. Between 0° and 100° knee flexion, length change pattern of the anterior, middle and posterior part of the dMCL and simulated AM reconstructions were analysed using a rotary encoder. Isometry was tested using the total strain range (TSR). Results The tibiofemoral distance of the anterior dMCL part lengthened with flexion (+12.7% at 100°), whereas the posterior part slackened with flexion (−12.9% at 100°). The middle part behaved almost isometrically (maximum length: +2.8% at 100°). Depending on the femoral position within the sMCL footprint, AM reconstructions resulted in an increase in length as the knee flexed when a more centred position was used, irrespective of the tibial attachment position. Femoral positioning in the posterior aspect of the sMCL footprint exhibited
ISSN:0942-2056
1433-7347
DOI:10.1002/ksa.12111