Loading…

An integrated approach based on HFE-D, GIS techniques, GQISWI, and statistical analysis for the assessment of potential seawater intrusion: coastal multilayered aquifer of Ghaemshahr-Juybar (Mazandaran, Iran)

The overexploitation of coastal aquifers is one of the important reasons for the salinity of groundwater due to seawater intrusion (SWI). This study assesses the hydrochemical changes of the Ghaemshahr-Juybar (GH.-J.) plain. For this purpose, specific statistical methods, modified Piper diagram grou...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2024-02, Vol.31 (9), p.13335-13371
Main Authors: Azari, Tahereh, Tabari, Mahmoud Mohammad Rezapour
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The overexploitation of coastal aquifers is one of the important reasons for the salinity of groundwater due to seawater intrusion (SWI). This study assesses the hydrochemical changes of the Ghaemshahr-Juybar (GH.-J.) plain. For this purpose, specific statistical methods, modified Piper diagram groundwater quality indicators ( GQI Piper mix and GQI Piper dom ), groundwater quality index specific to seawater intrusion ( GQI SWI ), and hydrochemical facies evolution diagram (HFE-D) along with GIS (Geographic Information System) techniques were applied to identify the spatiotemporal changes of salinity in coastal multilayer alluvial aquifer. The results show that the chemical composition in the GH.-J. aquifer is basically controlled by three main factors: (1) Caspian SWI and fossil saltwater penetration from an underlying layer, (2) reverse cation exchange process, and (3) feeding by domestic sewage, agricultural activities, and use of nitrate chemical fertilizers. The investigation of the hydrogeochemical facies evolution process shows that due to the reduction of extraction from wells, saltwater infiltration has significantly decreased. Therefore, according to the geological and lithological conditions of the aquifer and exposure to seawater, it is possible to prevent the entry of saltwater from the confined aquifer into the unconfined aquifer and the saltwater intrusion by developing well optimal operation policies in order to control withdrawal from semi-deep wells and the elimination of deep wells. This practical approach to managing the salinity of coastal aquifers is suitable for the allocating groundwater resources and for use in the development of aquifer simulation models.
ISSN:1614-7499
0944-1344
1614-7499
DOI:10.1007/s11356-024-31967-1