Loading…

Magnonics: Experiment to prove the concept

An experimental scheme for studying spin wave propagation across thin magnetic film samples is proposed. The scheme is based upon the creation of picosecond pulses of strongly localized effective magnetic field via ultrafast optical irradiation of a specially deposited exchange bias or exchange spri...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetism and magnetic materials 2006-11, Vol.306 (2), p.191-194
Main Authors: Kruglyak, V.V., Hicken, R.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An experimental scheme for studying spin wave propagation across thin magnetic film samples is proposed. The scheme is based upon the creation of picosecond pulses of strongly localized effective magnetic field via ultrafast optical irradiation of a specially deposited exchange bias or exchange spring layer. The spin waves are excited near the irradiated surface before propagating across the thickness of the sample. They are then detected near the other surface either within the finite optical skin depth using the linear magneto-optical Kerr effect in metallic samples or by the magnetic second harmonic generation. The experiment can facilitate investigations of propagating spin waves with wavelengths down to several nanometers and frequencies in excess of hundreds of Gigahertz. An experiment upon a periodically layered nanowire (a finite cross-section magnonic crystal) is numerically simulated, although the sample might equally well be a continuous film or an array of elements (e.g. nanowires) that either have uniform composition or are periodically layered as in a magnonic crystal. The experiments could be extended to study domain wall-induced spin wave phase shifts and can be used for the creation of spin wave magnetic logic devices.
ISSN:0304-8853
DOI:10.1016/j.jmmm.2006.02.242