Loading…

Investigation of causal relationships between cortical structure and osteoporosis using two-sample Mendelian randomization

Abstract The mutual interaction between bone characteristics and brain had been reported previously, yet whether the cortical structure has any relevance to osteoporosis is questionable. Therefore, we applied a two-sample bidirectional Mendelian randomization analysis to investigate this relationshi...

Full description

Saved in:
Bibliographic Details
Published in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2024-01, Vol.34 (2)
Main Authors: Li, Long-Jun, Zhong, Xian-Xing, Tan, Guo-Zhi, Song, Ming-Xi, Li, Pian, Liu, Zhen-Xin, Xiong, Si-Cheng, Yang, Da-Qi, Liang, Zu-Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The mutual interaction between bone characteristics and brain had been reported previously, yet whether the cortical structure has any relevance to osteoporosis is questionable. Therefore, we applied a two-sample bidirectional Mendelian randomization analysis to investigate this relationship. We utilized the bone mineral density measurements of femoral neck (n = 32,735) and lumbar spine (n = 28,498) and data on osteoporosis (7300 cases and 358,014 controls). The global surficial area and thickness and 34 specific functional regions of 51,665 patients were screened by magnetic resonance imaging. For the primary estimate, we utilized the inverse-variance weighted method. The Mendelian randomization-Egger intercept test, MR-PRESSO, Cochran’s Q test, and “leave-one-out” sensitivity analysis were conducted to assess heterogeneity and pleiotropy. We observed suggestive associations between decreased thickness in the precentral region (OR = 0.034, P = 0.003) and increased chance of having osteoporosis. The results also revealed suggestive causality of decreased bone mineral density in femoral neck to declined total cortical surface area (β = 1400.230 mm2, P = 0.003), as well as the vulnerability to osteoporosis and reduced thickness in the Parstriangularis region (β = −0.006 mm, P = 0.002). Our study supports that the brain and skeleton exhibit bidirectional crosstalk, indicating the presence of a mutual brain–bone interaction.
ISSN:1047-3211
1460-2199
DOI:10.1093/cercor/bhad529