Loading…

Emerging Nanomaterials toward Uranium Extraction from Seawater: Recent Advances and Perspectives

Nuclear energy holds great potential to facilitate the global energy transition and alleviate the increasing environmental issues due to its high energy density, stable energy output, and carbon‐free emission merits. Despite being limited by the insufficient terrestrial uranium reserves, uranium ext...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-06, Vol.20 (26), p.e2311130-n/a
Main Authors: Liu, Subiao, Wang, You‐Zi, Tang, Yu‐Feng, Fu, Xian‐Zhu, Luo, Jing‐Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nuclear energy holds great potential to facilitate the global energy transition and alleviate the increasing environmental issues due to its high energy density, stable energy output, and carbon‐free emission merits. Despite being limited by the insufficient terrestrial uranium reserves, uranium extraction from seawater (UES) can offset the gap. However, the low uranium concentration, the complicated uranium speciation, the competitive metal ions, and the inevitable marine interference remarkably affect the kinetics, capacity, selectivity, and sustainability of UES materials. To date, massive efforts have been made with varying degrees of success to pursue a desirable UES performance on various nanomaterials. Nevertheless, comprehensive and systematic coverage and discussion on the emerging UES materials presenting the fast‐growing progress of this field is still lacking. This review thus challenges this position and emphatically focuses on this topic covering the current mainstream UES technologies with the emerging UES materials. Specifically, this review elucidates the causality between the physiochemical properties of UES materials induced by the intellectual design strategies and the UES performances and further dissects the relationships of materials‐properties‐activities and the corresponding mechanisms in depth. This review is envisaged to inspire innovative ideas and bring technical solutions for developing technically and economically viable UES materials. Uranium extraction from seawater (UES) is vital for sustainable nuclear energy and global energy transition. A comprehensive discussion on emerging UES materials presenting the fast‐growing progress of this field, focusing on the current UES technologies, the causality between the physiochemical properties of emerging UES materials and UES performances, the relationships of materials‐properties‐activities and the corresponding mechanisms, is thus highly needed.
ISSN:1613-6810
1613-6829
1613-6829
DOI:10.1002/smll.202311130