Loading…

Muscle Cooling Before and in the Middle of a Session: There Are Benefits on Subsequent Localized Endurance Performance in a Warm Environment

Baláš, J, Kodejška, J, Procházková, A, Knap, R, and Tufano, JJ. Muscle cooling before and in the middle of a session: there are benefits on subsequent localized endurance performance in a warm environment. J Strength Cond Res 38(3): 533-539, 2024-Localized cold-water immersion (CWI) has been shown t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of strength and conditioning research 2024-03, Vol.38 (3), p.533-539
Main Authors: Baláš, Jiří, Kodejška, Jan, Procházková, Adéla, Knap, Roman, Tufano, James J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Baláš, J, Kodejška, J, Procházková, A, Knap, R, and Tufano, JJ. Muscle cooling before and in the middle of a session: there are benefits on subsequent localized endurance performance in a warm environment. J Strength Cond Res 38(3): 533-539, 2024-Localized cold-water immersion (CWI) has been shown to facilitate recovery in the middle of a session of exhaustive repeated forearm contractions. However, it has been suggested that these benefits may be attributed to "precooling" the muscle before an activity, as opposed to cooling a previously overheated muscle. Therefore, this study aimed to determine how precooling and mid-cooling affects localized repeated muscular endurance performance in a warm environment. Nineteen subjects completed a familiarization session and 3 laboratory visits, each including 2 exhaustive climbing trials separated by 20 minutes of recovery: PRE CWI (CWI, trial 1; passive sitting [PAS], trial 2); MID CWI (PAS, trial 1; CWI, trial 2); and CONTROL (PAS, trial 1; PAS, trial 2). Climbing trial 1 in PRE CWI was 32 seconds longer than in CONTROL ( p = 0.013; d = 0.46) and 47 seconds longer than in MID CWI ( p = 0.001; d = 0.81). The time of climbing trial 2 after PAS (PRE CWI and CONTROL) was very similar (312 vs. 319 seconds) irrespective of the first trial condition. However, the time of the second trial in MID CWI was 43 seconds longer than in PRE CWI ( p < 0.001; d = 0.63) and 50 seconds longer than in CONTROL ( p < 0.001; d = 0.69). In warm environments, muscle precooling and mid-cooling can prolong localized endurance performance during climbing. However, the effectiveness of mid-cooling may not be as a "recovery strategy" but as a "precooling" strategy to decrease muscle temperature before subsequent performance, delaying the onset of localized heat-induced neuromuscular fatigue.
ISSN:1064-8011
1533-4287
DOI:10.1519/JSC.0000000000004641